31.03.2020

ТЕМА: Спектральний аналіз та його застосування.

Вивчення атомних і молекулярних спектрів випромінювання і поглинання покладено в основу спеціального методу дослідження складу і будови речовини — спектрального аналізу. Він грунтується на кількісних і якісних методах дослідження спектрів електромагнітного випромінювання речовин, які спостерігають за допомогою спеціальних приладів — спектрографів і спектрометрів.

Принцип дії цих приладів грунтується на їх здатності виокремлювати в просторі і часі з усього світлового потоку певні ділянки випромінювання. їх можна фіксувати фотографічним способом або вимірювати різні їхні характеристики — зміну світлового потоку, довжину хвилі спектральної лінії тощо.  Тому головним елементом спектрометрів є селективний пристрій Ф (дисперсійна призма, дифракційна ґратка, інтерферометр   тощо), за допомогою якого вдається виділити частину спектра в певному інтервалі довжин хвиль.  Метод визначення в тілах якісного складу і кількісного вмісту речовини за її спектром називають спектральним аналізом

Селективність (від лат. selectus — вибраний) — вибірковість, ступінь здатності до вибірковості.

Є три типи спектрів:

Суцільний спектр — спектр, у якого монохроматичні складові заповнюють без розривів інтервал довжин хвиль, в межах якого відбувається випромінювання.

Суцільний спектр відтворює нейтрально білий колір, що теоретично в природі ніколи не зустрічається. Наприклад, спектр випромінювання сонця протягом дня змінюється з слабко жовтуватого до помаранчевого ввечері, що пояснюється розсіюванням коротких синьо-фіолетових хвиль в атмосфері. Розсіяні короткі хвилі в атмосфері забарвлюють її в блакитні відтінки, а до земної поверхні доходить світло в якому бракує частини спектру. Кольорова температура, баланс білого кольору — поняття які повязані із частковою зміною спектру та його коррекцією.


Смугастий спектр — спектр, монохроматичні складові якого утворюють групи (смуги), що складаються з безлічі тісно розташованих монохроматичних випромінювань. Смуги випромінювання в різних хімічних елементів різні, на чому і оснований спектральний аналіз речовин при аналізі сполук невідомого складу.

Лінійчатий спектр — спектр, що складається з окремих, не примикаючих один до одного монохроматичних випромінювань.

Для вивчення спектрів поглинання світловий потіквід джерела Д спрямовують на досліджуваний об'єкт О, після проходження крізь який він потрапляє на селективний пристрій Ф. Відокремлена певним способом частина спектра фіксується пристроями відображення Я (сканувальні екрани, фотоелементи, фотоплівки тощо). Далі характеристики випромінювання порівнюються з одержаним спектром і залежно від обраного методу спектроскопії на підставі їх аналізу роблять висновки щодо досліджуваних спектрів поглинання. За допомогою атомного спектрального аналізу визначають елементний склад зразка, зіставляючи його спектр зі спектральними лініями хімічних елементів, що наводяться у спеціальних таблицях і атласах. Для одержання спектра випромінювання досліджувану речовину потрібно перевести в газоподібний стан і активізувати, тобто перевести її атоми у збуджений стан. Найпростіше це можна зробити за допомогою нагрівання досліджуваного зразка, наприклад помістити його в полум'я. Якщо досліджувана речовина перебуває в газоподібному стані, для одержання її лінійчастого спектра використовують іскровий розряд: за високої напруги на електродах у газовому середовищі виникає електричний розряд, у стовпі якого атоми досліджуваної речовини активізуються. Для спектрального аналізу твердих тіл часто застосовують дуговий розряд: досліджуваний зразок у плазмі дуги перетворюється на пару з високою температурою. Кожен хімічний елемент має власний набір спектральнихліній, притаманний лише йому одному Для одержання спектра випромінювання атоми речовини слід перевести у збуджений стан, наприклад нагріти тіло до високої температури За високих температур атоми переходять у збуджений стан Е2, E3, Е4, Е5, в якому можуть перебувати недовго .


З часом вони повертаються у свій основний, стабільний стан E1, випромінюючи при цьому світловий квает пеевної частини: Кожний хімічний елемент має свій, властивий лише йому набір спектральних ліній — атомний спектр. За лініями атомного спектра речовини за допомогою спеціальних таблиць, в яких наведено серії довжин хвиль спектрів випромінювання різних речовин, визначають хімічний склад зразка. В основу молекулярного спектрального аналізу покладено порівняння виміряного спектра зразка зі спектрами окремих речовин. Молекулярні спектри подібні до атомних — вони також лінійчасті, проте мають свої особливості — спектральних ліній більше, тому вони утворюють доволі широкі смуги. Це пояснюють тим, що внаслідок взаємодії атомів, які складають молекулу, енергетичні рівні атомів розщеплюються, адже їх енергія зумовлена двома чинника¬ми — власними коливаннями атомів у молекулі та іншими її рухами. Створення та застосування квантових генераторів Як уже зазначалося, атом не може тривалий час перебувати у збудженому стані — через деякий час (порядку 10-8с) він переходить в умовно стабільний або стабільний стан. Такий самочинний його перехід з одного енергетичного стану в інший супроводжується, як правило, спонтанним випромінюванням кванта світла певної частоти. Оскільки це відбувається з кожним атомом довільно, то за звичайних умов спостерігається спонтанне випромінювання світла атомами, яке в сукупності є різночастотним, немонохроматичним і некогерентним за своєю природою. Електромагнітне випромінювання певної частоти (довжини хвилі) називають монохроматичним; випромінювання, що має однакову фазу, є когерентним У 1917 р. А. Ейнштейн припустив, що за певних умов випромінювання може бути вимушеним.


Зокрема, якщо електрон в атомі переходить з одного енергетичного рівня на інший під дією зовнішнього електро-магнітного поля, частота якого збігається з власною частотою квантового переходу електрона то випромінювання буде індукованим. Індуковане електромагнітне випромінювання є монохроматичним і когерентним. Особливістю такого випромінювання є те, що воно поширюється в тому самому напрямку, що й падаюче світло, є монохроматичним і когерентним з ним, тобто не відрізняється від поглинутої атомом електромагнітної хвилі ні за частотою, ні за фазою, ні за поляризацією. Інакше кажучи, внаслідок проходження електромагнітної хвилі крізь речовину може відбуватися когерентне підсилення світла за рахунок індукованого випромінювання Лазер — абревіатура слів англійського виразу «Light Amplification by Stimulated Emission of Radiation» (підсилення світла за допомогою вимушеного випромінювання) За допомогою лазерів можна досягати інтенсивності короткочасних імпульсів 1014 Втсм2 , що перевищує інтенсивність випромінювання Сонця в 1010 разів .


У підсиленні основну роль відіграють хвилі, що прямують уздовж осі стрижня. Багаторазово відбиваючись від плоскопаралельних торців, вони створюють інтенсивне монохроматичне когерентне випромінювання. Лазерне випромінювання характеризується певними властивостями, які вирізняють його серед інших джерел світла. Насамперед це вузькоспрямоване проміння з малим кутом розходження (до 10-5рад). Внаслідок цього можлива точна локалізація променя і його вибіркова дія на атоми, іони, молекули, яка викликає фотохімічні реакції, фотодисоціацію та інші фотоелектричні явища. Ця його властивість використовується в лазерній хімії, технологіях запису інформації на лазерних дисках, лікуванні зору тощо. Вийняткова монохроматичність і когерентність лазерного випромінювання дає змогу використовувати його в побудові стандартів частоти, спектроскопії, голографії, волоконній оптиці, в астрофізичних дослідженнях небесних тіл, тощо. Наприклад, за допомогою лазерної локації вдалося уточнити параметри руху Місяця і Венери, швидкість обертання Меркурія, наявність атмосфер у планет. Висока сконцентрованість енергії лазерного променя дає змогу досягти значної інтенсивності випромінювання, надвисоких температур і тисків. Це використовують у зварюванні і плавленні металів, для одержання надчистих матеріалів, у лазерній хірургії, під час термоядерного синтезу тощо. Залежно від активної речовини лазери бувають газові, рідинні, напівпровідникові та твердотілі. З появою лазерів започатковані такі нові розділи фізики, як нелінійна оптика і голографія 

дом.завдання: опрацювати тему